Is Random Close Packing of Spheres Well Defined?
نویسندگان
چکیده
منابع مشابه
Is random close packing of spheres well defined?
Despite its long history, there are many fundamental issues concerning random packings of spheres that remain elusive, including a precise definition of random close packing (RCP). We argue that the current picture of RCP cannot be made mathematically precise and support this conclusion via a molecular dynamics study of hard spheres using the Lubachevsky-Stillinger compression algorithm. We sug...
متن کاملRandom close packing of disks and spheres in confined geometries.
Studies of random close packing of spheres have advanced our knowledge about the structure of systems such as liquids, glasses, emulsions, granular media, and amorphous solids. In confined geometries, the structural properties of random-packed systems will change. To understand these changes, we study random close packing in finite-sized confined systems, in both two and three dimensions. Each ...
متن کاملRandom-close packing limits for monodisperse and polydisperse hard spheres.
We investigate how the densities of inherent structures, which we refer to as the closest jammed configurations, are distributed for packings of 10(4) frictionless hard spheres. A computational algorithm is introduced to generate closest jammed configurations and determine corresponding densities. Closest jamming densities for monodisperse packings generated with high compression rates using Lu...
متن کاملWhy is random close packing reproducible?
We link the thermodynamics of colloidal suspensions to the statistics of regular and random packings. Random close packing has defied a rigorous definition yet, in three dimensions, there is near universal agreement on the volume fraction at which it occurs. We conjecture that the common value of phi{rcp} approximately 0.64 arises from a divergence in the rate at which accessible states disappe...
متن کاملUniversality of Random Close Packing ?
In 1611 Kepler proposed that the densest packing of spheres could be achieved by stacking close-packed planes of spheres. In such a packing, the spheres occupy π/ √ 18 ≈74.05% of space. The Kepler conjecture was (almost certainly) proved in 1998 by Thomas Hales. When we pour a large number of equal-sized spheres in a container and shake them down, we do not obtain the Kepler packing. Rather a d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2000
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.84.2064